Logistic Regression
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Given new input, what’s the output?
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Given the data,
find a function /, o
that predicts y, given x

y = h(X)



What if y is a label?
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Given the data,
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that predicts y, given x
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What if y is a label?
h

X -_— y y Cancer or Not

A step function, or threshold

Given the data,
find a function A,
that predicts y, given x

y = h(X)
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What if y is a label?

A smooth function that returns
h probability of occurrence
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Given the data,
find a function A,
that predicts y, given x

y = h(X)
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What if y is a label?

A smooth function that returns

Y = he(x) & Y& 10,1} probability of occurrence
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What if y is a label?

A smooth function that returns
probability of occurrence
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What if y is a label?

y=hyx) & yel01]
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1. Define a predictor: the logistic function

2. Define a loss: distance between function and data ?

3. Optimize loss

4. Test model



How do we pick the best parameters 0 ?
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Logistic Regression Y

y = hy(x)
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Linear predictor Logistic predictor

negative log-likelihood or OLS Binary-cross entropy loss
I % - v\ G i i i
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Compute gradient V.Z£(0)

Gradient descent — Donel



Logistic Regression Y
y = hy(x)

hy(x) = =g (6’Tx)
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Why not use an ordinary least squares loss”?

Using ordinary least squares (OLS) with the logistic function for logistic regression is generally not appropriate due to several key
reasons:

. Non-Linearity: The logistic function is non-linear, mapping a linear combination of inputs to a probability between 0 and 1. OLS is
designed to minimize the sum of squared differences between the observed values and a linear model’s predictions. However, in
logistic regression, the relationship between the input variables and the probability of the outcome is non-linear. OLS would not
appropriately handle this non-linear relationship.

. Non-Gaussian Residuals: OLS assumes that the residuals (errors between the observed and predicted values) are normally
distributed. In logistic regression, the residuals follow a binomial distribution, not a normal distribution. Therefore, applying OLS would
violate the assumptions of the method, leading to biased and inefficient estimates.

. Prediction Outside (0, 1) Interval: OLS does not inherently restrict predictions to the interval [0, 1]. Since probabilities must lie within
this range, OLS could produce predicted values that are less than O or greater than 1, which is not meaningful in the context of
probabilities.

. Inefficient Estimation: The estimates obtained using OLS in the context of a logistic regression model would not be the most efficient
(i.e., they would not have the lowest variance among unbiased estimators). Maximum likelihood estimation (MLE), used in logistic
regression, provides more efficient and reliable parameter estimates in this setting.

. Interpretation of Results: Logistic regression models the log-odds of the outcome as a linear combination of the predictors. The OLS
approach does not provide a straightforward interpretation in terms of odds or probabilities, which are the natural scales for binary
outcomes.




Probabilistic Interpretation of Linear Regression
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Probabilistic Interpretation

Assume noise Is ) — AT.(0) (i)
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Likelihood of output given input

n
L(O) = H p (y(i) | x); 9) Independent and Identically Distributed (IID)
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Log-likelihood

Z(0) = log L(6)

20?



Maximize Log-likelihood
Z(0) = log L(0)
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What if the noise is not Gaussian?




Why not Least Squares? Vi

y = hy(x)

he(x) —
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Probability of output given input

True label
Ply=1|x,0) = hy(x) ‘ N
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For Bernoulli Distributed Noise



Bernoulli Distribution

Properties |eit;

If X is a random variable with a Bernoulli distribution, then:
Pr(X=1)=p=1—-Pr(X=0)=1—gq.

The probability mass function f of this distribution, over possible outcomes k; is

. o p ifll.;:  [3]
f(k’p)_{qzl—p if k = 0.

This can also be expressed as

Flkip) = pF(1—p)'* for k€ {0,1}

f(k;p) =pk+ (1 —p)(1 — k) forke{0,1}.

The Bernoulli distribution is a special case of the binomial distribution with n = 1.4



Define Log-likelihood

Likelihood
1—
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Maximize Log-likelihood

Z(0) = Hy(i) log hy (x(i)) + (1 — y(i)) log (1 — hy (x(i)))
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Update rule Gradient Descent
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for all parameters J:

0ZO) | —

0. =0+« |
o 00, Derive 0; .= 0, - az ( (x®) = <l>) xj(’)

J K g
Z(0) ; D\ G
= <h9 (x®) _y<>>xj<>

J

\_




Base Code Snippet



Scikit-Learn Code Snippet



Example



