
Kernel Methods



Feature Engineering
 is does not have to be linear in h x

Feature map

Example: construct a polynomial model

Input Output

y

hθ(x) = [θ0, θ1, θ2, θ3, …] ⋅ [1, x, x2, x3, …]

hθ(x) = θ0 + θ1x + θ2x2 + θ3x3 + …

hθ(x) = θ⊤ϕ(x)
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 are sometimes called input attributesx



Least mean squares

Gradient Descent Update
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θ := θ + α (y(i) − hθ (x(i))) x(i)

θ := θ + α (y(i) − θ⊤ϕ (x(i))) ϕ (x(i))



Least mean squares

  

What happens if  is large? 

ϕ(x) ∈ ℝp

p

ϕ(x) =

1
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x2
⋮
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⋮
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⋮
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1
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1 x2
⋮

Polynomial of degree 5 
with a  attributes: d = 100 x ∈ ℝ100

Requires storing  dimensional vector for 1010 θ

Can we simplify the problem to store less values?



Kernel Trick
 can be represented as a linear combination of θ ϕ (x(1)), ϕ (x(2)), …, ϕ (x(n))

θ =
n

∑
i=1

βi ϕ (x(i)) β1, …, βn ∈ ℝ



Kernel Trick
Replacing in the update rule:

θ =
n

∑
i=1

βi ϕ (x(i))

θ := θ + α
n

∑
i=1

(y(i) − θTϕ(x(i))) ϕ(x(i))

:=
n

∑
i=1

βiϕ(x(i)) + α
n

∑
i=1

(y(i) − θTϕ(x(i))) ϕ(x(i))

:=
n

∑
i=1

(βi + α (y(i) − θTϕ(x(i)))) ϕ(x(i))

new βi



Kernel Trick
Replacing in the update rule:

θ =
n

∑
i=1

βi ϕ (x(i))

βi := βi + α (y(i) − θTϕ(x(i)))

θ :=
n

∑
i=1

(βi + α (y(i) − θTϕ(x(i)))) ϕ(x(i))

new βi

βi := βi + α y(i) −
n

∑
j=1

βj ϕ(x( j))Tϕ(x(i)) For all i = 1...n



Kernel Trick

New update rule, in  instead of :β θ

θ =
n

∑
i=1

βi ϕ (x(i))

βi := βi + α y(i) −
n

∑
j=1

βj ϕ(x( j))Tϕ(x(i)) For all i = 1...n
Dot product

Don’t we still need to compute a dot product of 2  (  is large) pairs ? ℝp p ∀(i, j)

• We can precompute  for all pairs before running SGD


• For some feature maps , computing  can be efficient  
and doesn’t require computing 

ϕ(x( j)) ⋅ ϕ(x(i))

ϕ() ϕ(x( j)) ⋅ ϕ(x(i))
ϕ(x(i))



Kernel Trick

Computing  doesn’t require computing ϕ(x( j)) ⋅ ϕ(x(i)) ϕ(x(i))

⟨ϕ(x), ϕ(z)⟩ = 1 +
d

∑
i=1

xizi + ∑
i,j∈{1,…,d}

xixjzizj + ∑
i,j,k∈{1,…,d}
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= 1 +
d

∑
i=1

xizi + (
d

∑
i=1

xizi)
2

+ (
d

∑
i=1

xizi)
3

= 1 + ⟨x, z⟩ + ⟨x, z⟩2 + ⟨x, z⟩3 No need to compute ϕ(x)



Kernel Trick

Computing  doesn’t require computing ϕ(x( j)) ⋅ ϕ(x(i)) ϕ(x(i))

⟨ϕ(x), ϕ(z)⟩ = 1 +
d

∑
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Kernel Trick
Definition of a Kernel corresponding to a feature map  is:ϕ

Algorithm

K(x, z) = ϕ(x) ⋅ ϕ(z) = ⟨ϕ(x), ϕ(z)⟩

K (x(i), x( j)) = ⟨ϕ (x(i)) ⋅ ϕ (x( j))⟩Compute: for all i, j ∈ {1,...,n}

Loop: βi := βi + α y(i) −
n

∑
j=1

βj K (x(i), x( j)) for all i ∈ {1,...,n}

β := β + α ( ⃗y − Kβ)



Hypothesis with Kernels
How do we find compute the predictor?

hθ(x) = θTϕ(x)

=
n

∑
i

βi ϕ (x(i))⊤ ϕ(x)

=
n

∑
i

βi K (x(i), x)
All we need to know about  is in Kϕ



Other Kernels?
What kind of Kernel functions  correspond to some feature map ?K( ⋅ , ⋅ ) ϕ

Instead of picking , can we pick a kernel function  that satisfies 
the property that ? 

ϕ K
K(x, z) = ϕ(x) ⋅ ϕ(z)

K(x, z) = (xTz)2

Example



Other Kernels?
What kind of Kernel functions  correspond to some feature map ?K( ⋅ , ⋅ ) ϕ

Instead of picking , can we pick a kernel function  that satisfies 
the property that ? 

ϕ K
K(x, z) = ϕ(x) ⋅ ϕ(z)

K(x, z) = (xTz)2



Kernels as similarity metrics
What kind of Kernel functions  correspond to some feature map ?K( ⋅ , ⋅ ) ϕ

 can be considered a distance metric between  and K = ϕ(x) ⋅ ϕ(z) ϕ(x) ϕ(z)

K(x, z) = exp (−
∥x − z∥2

2σ2 )
As long as  is positive semidefinite, it’s a valid kernelK



Example

[0, 0, 1, 0, 0, 0, 0, 0, 0]


