Kernel Methods

Feature Engineering

h is does not have to be linear in x

Example: construct a polynomial model

hH(X) — HO + 6’1)6 + 92)(:2 + HB.XB + .

hﬁ(x) — [9()9 619029 939] . [laxa -xza x39

0 $(x)

Input Output

Y

y(l)

y()
y(3)
y()

o]

Feature map - X

ho(x) = 0" p(x)

Xx are sometimes called input attributes

Input Output

Least mean squares

Gradient Descent Update

0:= 0+ a (3= hy (x)) £

0.=0+ (y(i) —0'¢ (x(i))> b (x(i))

Least mean squares 1

X1
X2
D(x) € RP :
12
What happens if p is large? 1
X142
o) = |51
Polynomial of degree 5 :
with a d = 100 attributes: x € R XX
Requires storing 10'Y dimensional vector for 0 X
)

Can we simplify the problem to store less values?

Kernel Trick

0 can be represented as a linear combination of ¢ (x(l)) , (x(z)) RN, (x(”))

0=) po(x?) Brr....f, € R
=1

Kernel Trick n |
0 = Zﬁz¢ (x(l))
=1

Replacing in the update rule:
0:=0+a) (yV-0Tpx")) px?)
i=1
— Z ’5l¢(x(i)) 1+ Z (y(i) _ 9T¢(x(i))) H(x?)
i=1 i=1

= 3 (Bt a (50 - 07p)) s
=1

new [,

Kernel Trick

0= 5¢ (")
=1

Replacing in the update rule:

n

0:= Y (B+a (O - 0"pe")))
= new f.

pii=p+a (y(i) - HTQb(X(i)))

pi=p+a [)’(i) — Zﬁ] ¢(X(j))T¢(X(i))] Foralli = 1...n
j=1

Kernel Trick

0= pio(x?)
=1

New update rule, in / instead of O

n
pi=B+a|y" - Zﬁ] p(x) Pp(x) Foralli =1...n
/=1 Dot product

Don’t we still need to compute a dot product of 2 R” (p is large) pairs V(i,)?

. We can precompute ¢(x) - p(xV) for all pairs before running SGD

» For some feature maps ¢)(), computing d(x) - p(x?) can be efficient
and doesn’t require computing qb(x(l))

Kernel Trick

Computing ¢(x) - p(x'V) doesn’t require computing ¢ (xV)

d
(Px), Pp(2)) =1+ Z XiZ; Z X XiZZ; T Z XiXjAgLikil P(x) =
i=1

i,je{1,....d} i,7,kell,....d}

=1+ (x,2) + (x,2)> + (x, 2)° No need to compute ¢(x)

Kernel Trick

Computing ¢(x) - p(x'V) doesn’t require computing ¢ (xV)

d
(Pp(x), Pp(2)) =1 + Z XiZj T Z XiXjZiZj + Z A ik <ijk
i=1

i,je{1,....d} i,7,kell,....d}

P(x) =

Kernel Trick

Definition of a Kernel corresponding to a feature map ¢ is:

K(x,z) = ¢p(x) - ¢(2) = (P(x), P(2))
Algorithm
Compute: K (x(i),x(j)) = <¢ (x(i)) - @ (x(j))> foralli,j € {1,...,

Loop: p;=p;+« [y(i) — Z,QK(X(i),x(j))] foralli € {1,....n}
j=1

pi=p+a(y—Kp)

Hypothesis with Kernels

How do we find compute the predictor?

hy(x) = 6" p(x)

=Y 3 ¢ (x?) o)

= iﬁi K (x(i),x)

All we need to know about ¢ is in K

Other Kernels?

What kind of Kernel functions K(- , -) correspond to some feature map @?

Instead of picking ¢, can we pick a kernel function K that satisfies
the property that K(x, z) = ¢(x) - ¢(2)?

Example

K(x,2) = (x"2)*

Other Kernels?

What kind of Kernel functions K(- , -) correspond to some feature map @?

Instead of picking ¢, can we pick a kernel function K that satisfies
the property that K(x, z) = ¢(x) - ¢p(2)?

K(x,2) = (x"2)°

Kernels as similarity metrics

What kind of Kernel functions K(- , -) correspond to some feature map @?

K = ¢(x) - ¢p(2) can be considered a distance metric between ¢(x) and ¢(z)

)
lx — z|

K(x,z) =exp| — >

As long as K is positive semidefinite, it’s a valid kernel

— [0,0,1,0,0,0,0,0, 0]

