Kernel Methods

Feature Engineering

h is does not have to be linear in x

Example: construct a polynomial model

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \dots$$

$$h_{\theta}(x) = \begin{bmatrix} \theta_0, \theta_1, \theta_2, \theta_3, \dots \end{bmatrix} \cdot \begin{bmatrix} 1, x, x^2, x^3, \dots \end{bmatrix}$$

$$\theta \qquad \qquad \qquad \phi(x)$$
Feature map

$$h_{\theta}(x) = \theta^{\mathsf{T}} \phi(x)$$

x are sometimes called input attributes

Least mean squares

Gradient Descent Update

$$\theta := \theta + \alpha \left(y^{(i)} - h_{\theta} \left(x^{(i)} \right) \right) x^{(i)}$$

$$\theta := \theta + \alpha \left(y^{(i)} - \theta^{\mathsf{T}} \phi \left(x^{(i)} \right) \right) \phi \left(x^{(i)} \right)$$

Least mean squares

$$\phi(x) \in \mathbb{R}^p$$

What happens if p is large?

Polynomial of degree 5 with a d=100 attributes: $x \in \mathbb{R}^{100}$

Requires storing 10^{10} dimensional vector for $\boldsymbol{\theta}$

Can we simplify the problem to store less values?

```
x_2x_1
```

 θ can be represented as a linear combination of $\phi(x^{(1)}), \phi(x^{(2)}), \ldots, \phi(x^{(n)})$

$$\theta = \sum_{i=1}^{n} \beta_i \phi \left(x^{(i)} \right)$$

$$\beta_1, \ldots, \beta_n \in \mathbb{R}$$

Replacing in the update rule:

$$\theta = \sum_{i=1}^{n} \beta_i \phi \left(x^{(i)} \right)$$

$$\begin{aligned} \theta &:= \theta + \alpha \sum_{i=1}^n \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right) \phi(x^{(i)}) \\ &:= \sum_{i=1}^n \beta_i \phi(x^{(i)}) + \alpha \sum_{i=1}^n \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right) \phi(x^{(i)}) \\ &:= \sum_{i=1}^n \left(\beta_i + \alpha \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right) \right) \phi(x^{(i)}) \\ &= \sum_{i=1}^n \left(\beta_i + \alpha \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right) \right) \phi(x^{(i)}) \end{aligned}$$

$$\theta = \sum_{i=1}^{n} \beta_i \phi \left(x^{(i)} \right)$$

Replacing in the update rule:

$$\theta := \sum_{i=1}^{n} \left(\beta_i + \alpha \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right) \right) \phi(x^{(i)})$$

$$\text{new } \beta_i$$

$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right)$$

$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j \ \phi(x^{(j)})^T \phi(x^{(i)}) \right)$$
 For all $i = 1...n$

Kernel Trick
$$\theta = \sum_{i=1}^{n} \beta_i \phi(x^{(i)})$$

New update rule, in β instead of θ :

$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j \ \phi(x^{(j)})^T \phi(x^{(i)}) \right)$$
 For all $i = 1...n$

Don't we still need to compute a dot product of 2 \mathbb{R}^p (p is large) pairs $\forall (i,j)$?

- We can precompute $\phi(x^{(j)}) \cdot \phi(x^{(i)})$ for all pairs before running SGD
- For some feature maps $\phi()$, computing $\phi(x^{(j)}) \cdot \phi(x^{(i)})$ can be efficient and doesn't require computing $\phi(x^{(i)})$

Computing $\phi(x^{(j)}) \cdot \phi(x^{(i)})$ doesn't require computing $\phi(x^{(i)})$

$$\langle \phi(x), \phi(z) \rangle = 1 + \sum_{i=1}^{d} x_i z_i + \sum_{i,j \in \{1,...,d\}} x_i x_j z_i z_j + \sum_{i,j,k \in \{1,...,d\}} x_i x_j x_k z_i z_j z_k \qquad \phi(x) = 1 + \sum_{i=1}^{d} x_i z_i + \left(\sum_{i=1}^{d} x_i z_i\right)^2 + \left(\sum_{i=1}^{d} x_i z_i\right)^3$$

$$= 1 + \langle x, z \rangle + \langle x, z \rangle^2 + \langle x, z \rangle^3 \qquad \text{No need to compute } \phi(x)$$

Computing $\phi(x^{(j)}) \cdot \phi(x^{(i)})$ doesn't require computing $\phi(x^{(i)})$

$$\langle \phi(x), \phi(z) \rangle = 1 + \sum_{i=1}^{d} x_i z_i + \sum_{i,j \in \{1,...,d\}} x_i x_j z_i z_j + \sum_{i,j,k \in \{1,...,d\}} x_i x_j x_k z_i z_j z_k$$

 x_1x_2 x_1x_3 $\phi(x) =$ $x_{2}x_{1}$ \vdots x_{1}^{3} $x_{1}^{2}x_{2}$

Definition of a **Kernel** corresponding to a feature map ϕ is:

$$K(x,z) = \phi(x) \cdot \phi(z)$$
 = $\langle \phi(x), \phi(z) \rangle$

Algorithm

Compute:
$$K\left(x^{(i)}, x^{(j)}\right) = \langle \phi\left(x^{(i)}\right) \cdot \phi\left(x^{(j)}\right) \rangle$$
 for all $i, j \in \{1, ..., n\}$
Loop: $\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j K\left(x^{(i)}, x^{(j)}\right)\right)$ for all $i \in \{1, ..., n\}$

$$\beta := \beta + \alpha \left(\vec{y} - K\beta \right)$$

Hypothesis with Kernels

How do we find compute the predictor?

$$h_{\theta}(x) = \theta^{T} \phi(x)$$

$$= \sum_{i}^{n} \beta_{i} \phi(x^{(i)})^{\top} \phi(x)$$

$$= \sum_{i}^{n} \beta_{i} K(x^{(i)}, x)$$

All we need to know about ϕ is in K

Other Kernels?

What kind of Kernel functions $K(\,\cdot\,,\,\cdot\,)$ correspond to some feature map ϕ ?

Instead of picking ϕ , can we pick a kernel function K that satisfies the property that $K(x,z) = \phi(x) \cdot \phi(z)$?

Example

$$K(x,z) = (x^T z)^2$$

Other Kernels?

What kind of Kernel functions $K(\,\cdot\,,\,\cdot\,)$ correspond to some feature map ϕ ?

Instead of picking ϕ , can we pick a kernel function K that satisfies the property that $K(x,z) = \phi(x) \cdot \phi(z)$?

$$K(x,z) = (x^T z)^2$$

Kernels as similarity metrics

What kind of Kernel functions $K(\,\cdot\,,\,\cdot\,)$ correspond to some feature map ϕ ?

 $K = \phi(x) \cdot \phi(z)$ can be considered a distance metric between $\phi(x)$ and $\phi(z)$

$$K(x,z) = \exp\left(-\frac{\|x-z\|^2}{2\sigma^2}\right)$$

As long as K is positive semidefinite, it's a valid kernel

Example

