Deep Learning

The ML workflow

How do I choose the feature vector?

$$\phi(x) = [1, x, \dots, ?]$$

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \boxed{\phi(x)} \qquad \phi(x) = [1, x]$$

$$\phi(x) = [1, x, x^2, x^3]$$

$$\phi(x) = [1, x, \sin(3x)]$$

$$(x) = [1, x, \sin(3x)]$$

How do I choose the feature vector?

$$\phi(x) = [1, x, \dots, ?]$$

Decision Boundary

$$\phi(x) \cdot \mathbf{w} = 0$$

Boat

Linear Predictor

$$f_{\mathbf{w}}(x) = \mathbf{x} \cdot \mathbf{w}$$

$$\mathbf{w} = \begin{bmatrix} w_1, w_2, w_3, w_4 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1, x_2, x_3, x_4 \end{bmatrix}$$

$$f_{\mathbf{w}}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

Network Representation

Linear Predictor

2 outputs?

3 * 2 fitting parameters

$$\hat{y}_1 = \mathbf{w}_1 \cdot \mathbf{x} = w_{11}x_1 + w_{12}x_2 + w_{13}x_3$$

$$\hat{y}_2 = \mathbf{w}_2 \cdot \mathbf{x} = w_{21}x_1 + w_{22}x_2 + w_{23}x_3$$

Matrix form

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\hat{\mathbf{y}} = \mathbf{W} \qquad \mathbf{x}$$

From Matrix to Network

Matrix Representation

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\hat{\mathbf{v}} = \mathbf{W} \qquad \mathbf{x}$$

Network Representation

Index notation

$$\hat{y}_i = \sum_{j=1}^n w_{ij} x_j$$

Linear Predictor - Explicit Bias

Matrix Representation

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} = \begin{bmatrix} w_{12} & w_{13} \\ w_{22} & w_{23} \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} w_{11} \\ w_{21} \end{bmatrix}$$

$$\hat{\mathbf{y}} = \mathbf{W} \mathbf{x}$$

Network Representation

$$b_{1} = w_{11}$$

$$x_{2} \xrightarrow{w_{12}} + \hat{y}_{1}$$

$$x_{3} \xrightarrow{w_{13}} w_{23} + \hat{y}_{2}$$

$$b_{2} = w_{21}$$

Linear Predictor

of outputs

Number

of inputs

Some formulations explicitly account for \mathbf{b} , while others include the bias as part of \mathbf{x}

Here we omit b for simplicity of representation

Nonlinear Predictor

$$\hat{\mathbf{y}} = \sigma(\mathbf{W}\mathbf{x})$$

Logistic function:
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

ReLU:
$$\sigma(x) = xH(x)$$

Neural network

$$\hat{\mathbf{y}} = \sigma(\mathbf{W}_2 \ \sigma(\mathbf{W}_1\mathbf{x}))$$

$$\mathbf{x} \rightarrow \mathbf{v}_2 \circ \boldsymbol{\sigma} \circ \mathbf{w}_1 \rightarrow \mathbf{\hat{y}}$$
Nonlinear Linear Nonlinear Linear

Neural network

$$\hat{\mathbf{y}} = \sigma(\mathbf{W}_{1}\mathbf{x})$$

$$\mathbf{v} = \sigma(\mathbf{W}_{1}\mathbf{x})$$

$$\hat{\mathbf{y}} = \sigma(\mathbf{W}_{2}\mathbf{v})$$

$$\mathbf{v}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

Hidden layer

Can be interpreted as a learned $\phi(\mathbf{x})$

Deep network

$$\hat{\mathbf{y}} = \sigma \left(\mathbf{W}_{3} \ \sigma \left(\mathbf{W}_{2} \ \sigma \left(\mathbf{W}_{1} \mathbf{x} \right) \right) \right) \\
\overset{\mathbf{x}}{v_{2}} \\
\begin{matrix} \mathbf{x}_{1} \\ x_{2} \\ x_{3} \end{matrix}$$

$$\begin{array}{c} \mathbf{v}_{1} \\ v_{2} \\ v_{2} \\ v_{3} \\ v_{4} \end{array}$$

$$\begin{array}{c} \mathbf{v}_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ \end{array}$$

$$\begin{array}{c} \hat{\mathbf{y}} \\ \hat{\mathbf{y}}_{1} \\ \hat{\mathbf{y}}_{2} \\ \end{array}$$

$$\mathbf{v}^{(1)} = \sigma\left(\mathbf{W}_1\mathbf{x}\right) \qquad \mathbf{v}^{(2)} = \sigma\left(\mathbf{W}_2\mathbf{v}^{(1)}\right) \qquad \hat{\mathbf{y}} = \sigma\left(\mathbf{W}_3\mathbf{v}^{(2)}\right)$$

Why deep learning?

Feature learning