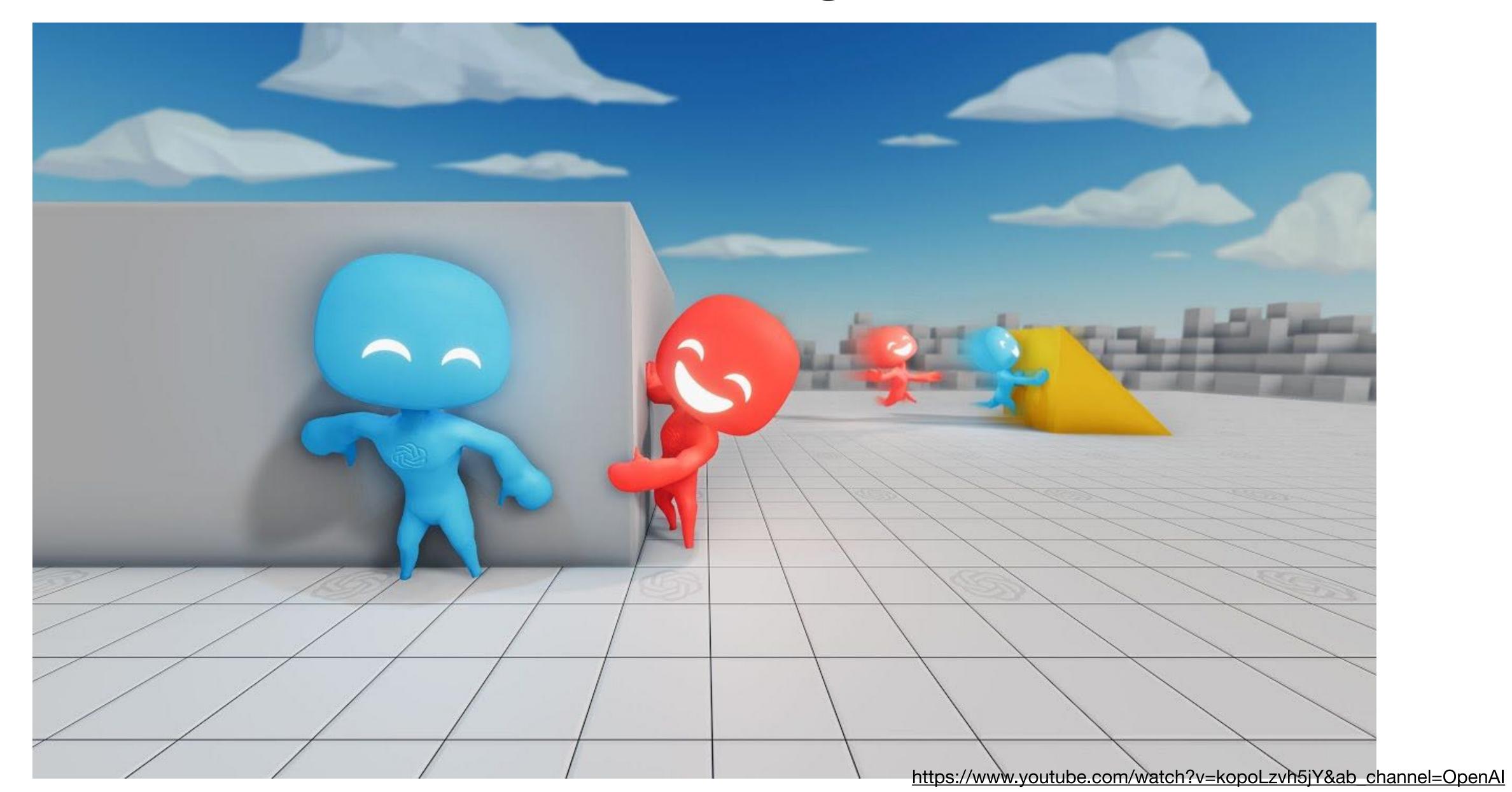
Reinforcement Learning

Part I

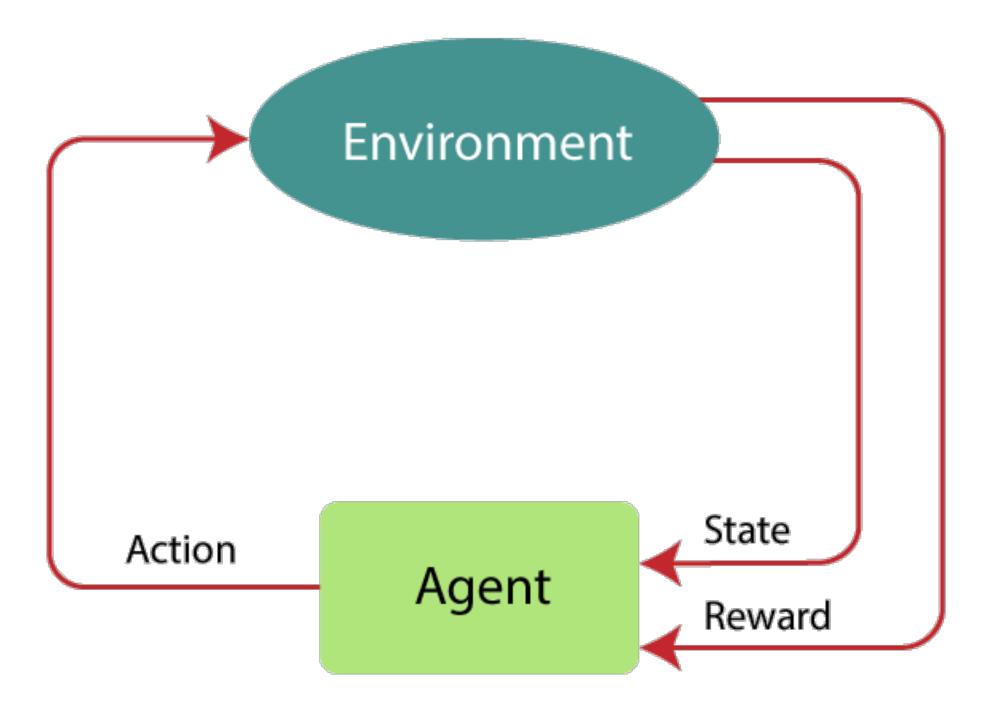
Prepared by: Joseph Bakarji

Example: OpenAl's Multi-Agent Hide and Seek



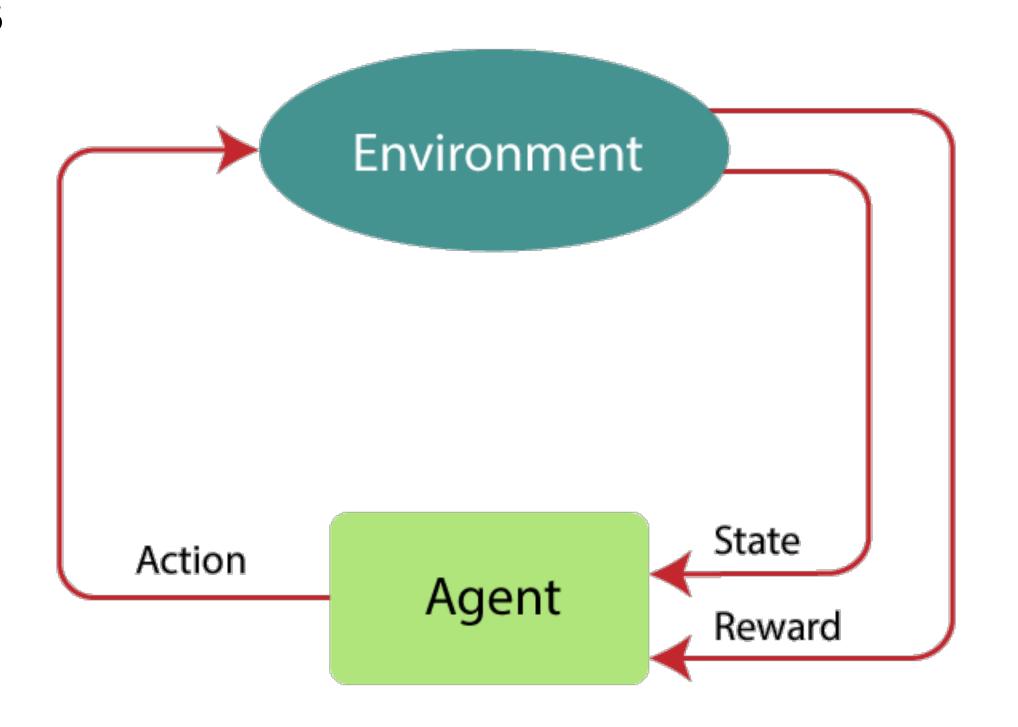
What are the features of an intelligent agent?

- Actions: make decisions and act from a set of possible
- Perceptions: observe the world and one's own state

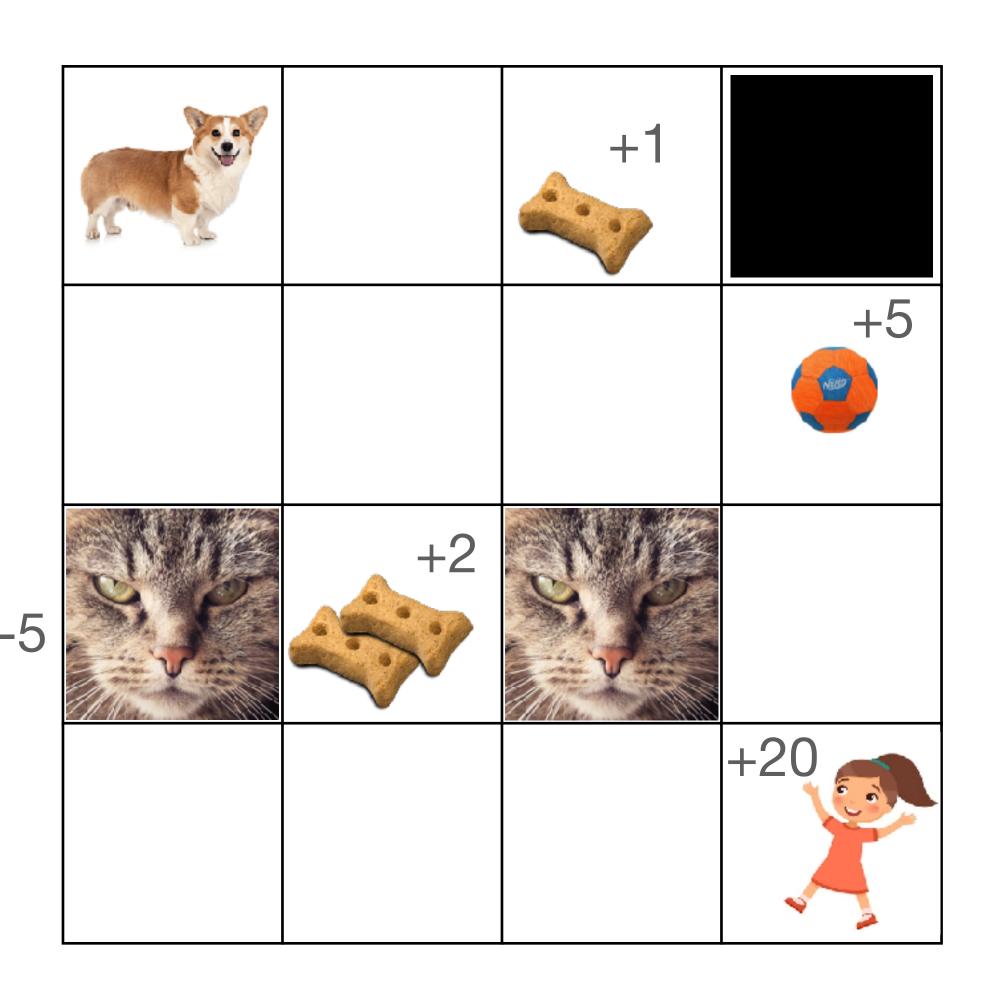


What are the features of an intelligent agent?

- Plan for long-term consequences: decisions today will affect the state tomorrow and later, etc.
- Decisions will determine how much information you collect from the environment
- No or little supervision: collect more data interactively



Example



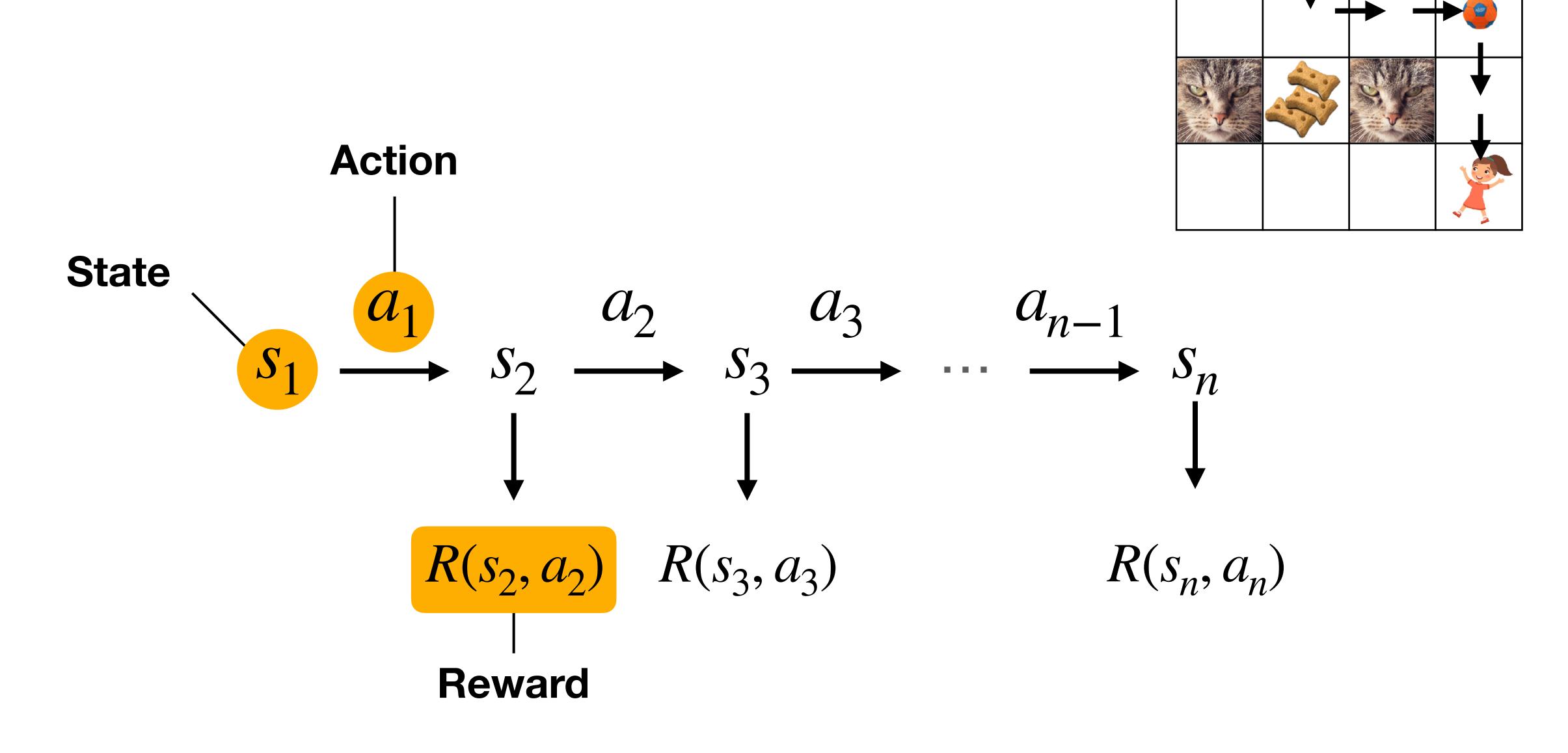
States: $s \in \{(1,1), (1,2), \dots, (4,4)\}$

Actions: $a \in \{ \rightarrow, \leftarrow, \uparrow, \downarrow \}$

Rewards: $R(s_i) \in [-5, 20]$

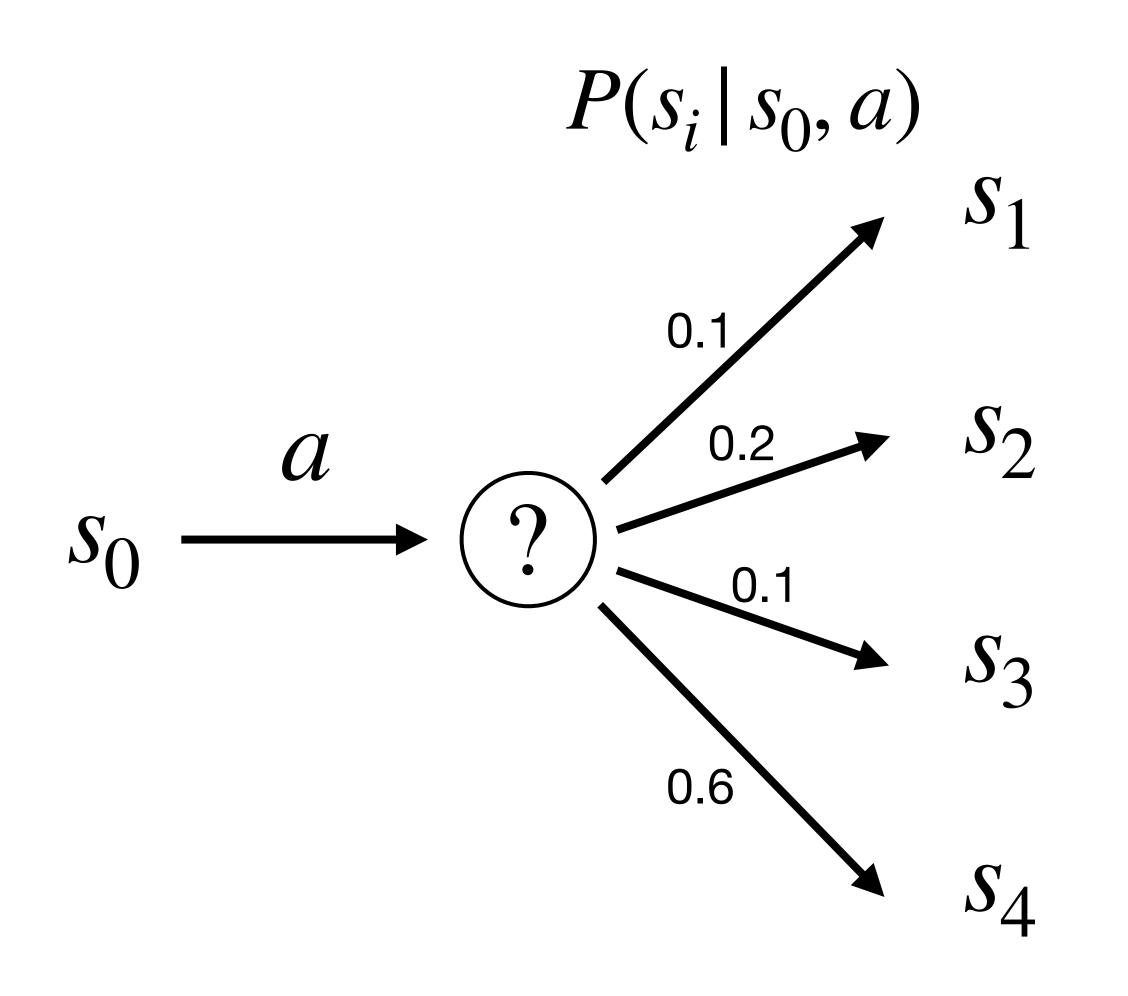
Transition probability: $P(s'|s,a) \in [0,1]$

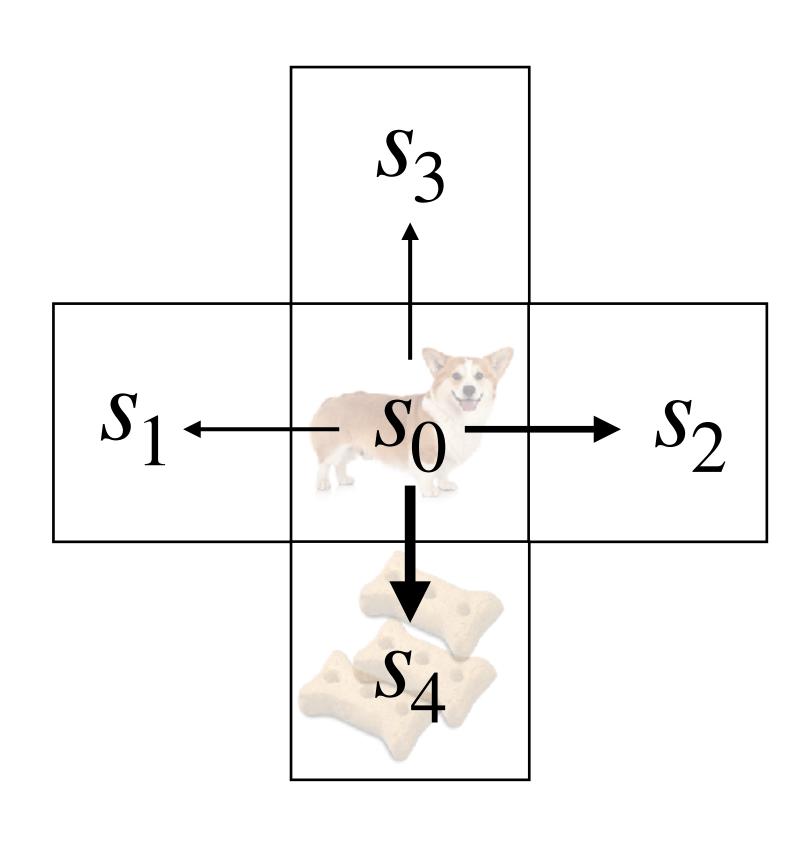
Definitions



Markov Decision Process (MDP)

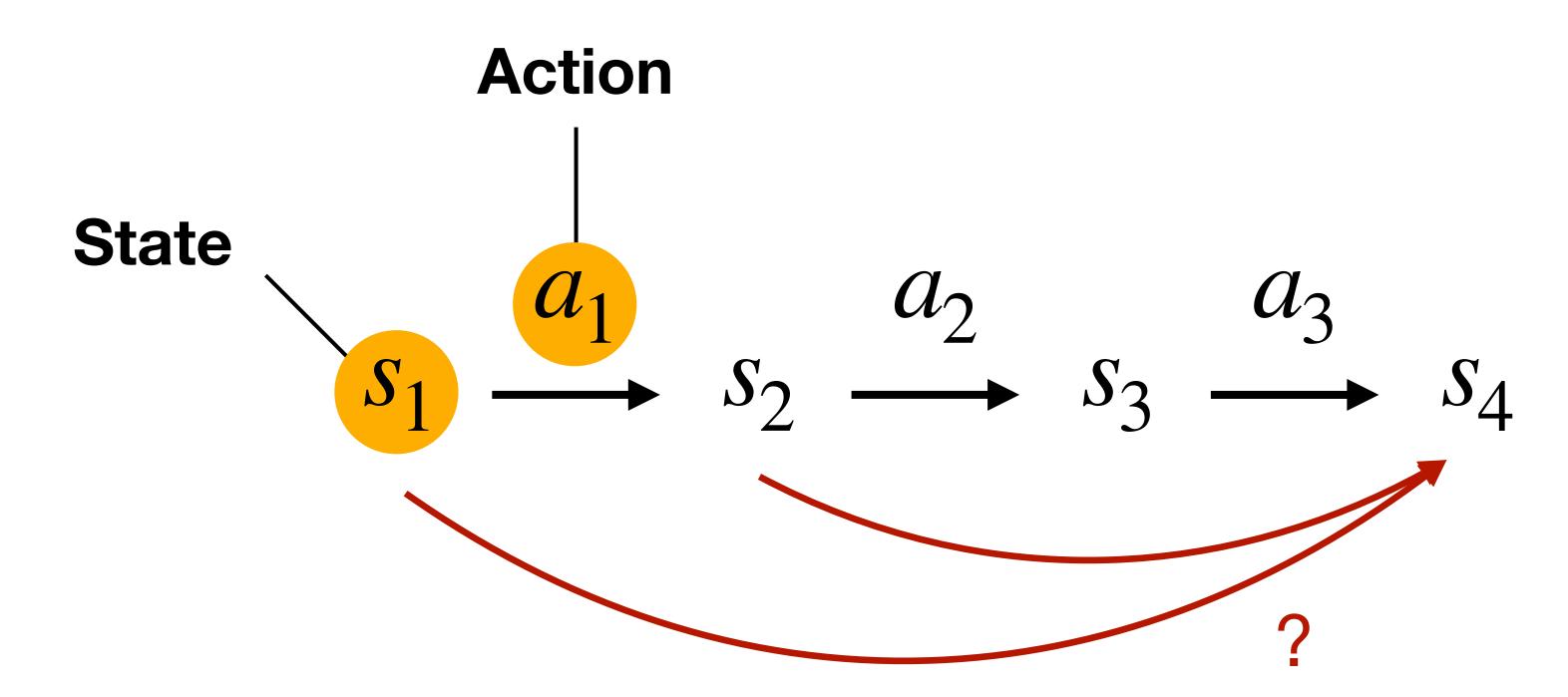
Assumes a probabilistic (uncertain) world



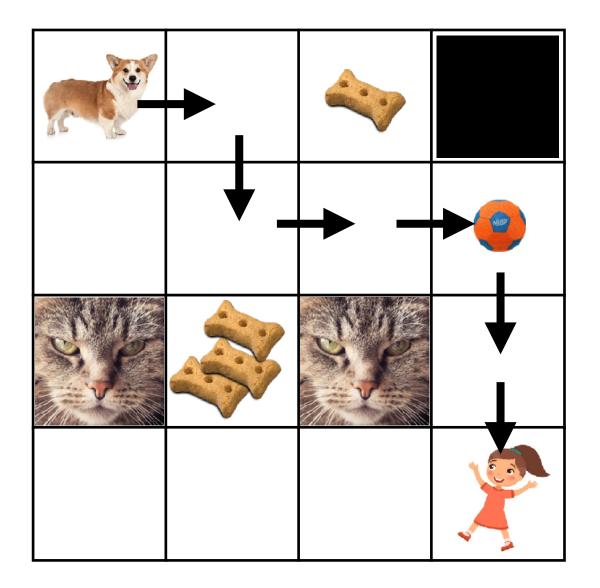


Markov Decision Process (MDP)

The Markov assumption: transition probability only depends on previous state



$$P(s_i | s_{i-1}, s_{i-2}, s_{i-3}, a_i, a_{i-1}, ...) = P(s_i | s_{i-1}, a_i)$$



Goal: Maximize Total Rewards

Definition of *Total Rewards*

$$S_1 \xrightarrow{a_1} S_2 \xrightarrow{a_2} S_3 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} S_n$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$R(s_2, a_2) \quad R(s_3, a_3) \qquad \qquad R(s_n, a_n)$$

Total Rewards =
$$R(s_1, a_1) + \gamma R(s_2, a_2) + \gamma^2 R(s_3, a_3) + \dots$$
Discount Factor $\gamma < 1$

Favors immediate rewards over future ones

Goal: Maximize Total Rewards

Definition of *Total Rewards*

$$S_{1} \xrightarrow{a_{1}} S_{2} \xrightarrow{a_{2}} S_{3} \xrightarrow{a_{3}} \cdots \xrightarrow{a_{n-1}} S_{n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$R(s_{2}, a_{2}) \quad R(s_{3}, a_{3}) \qquad \qquad R(s_{n}, a_{n})$$

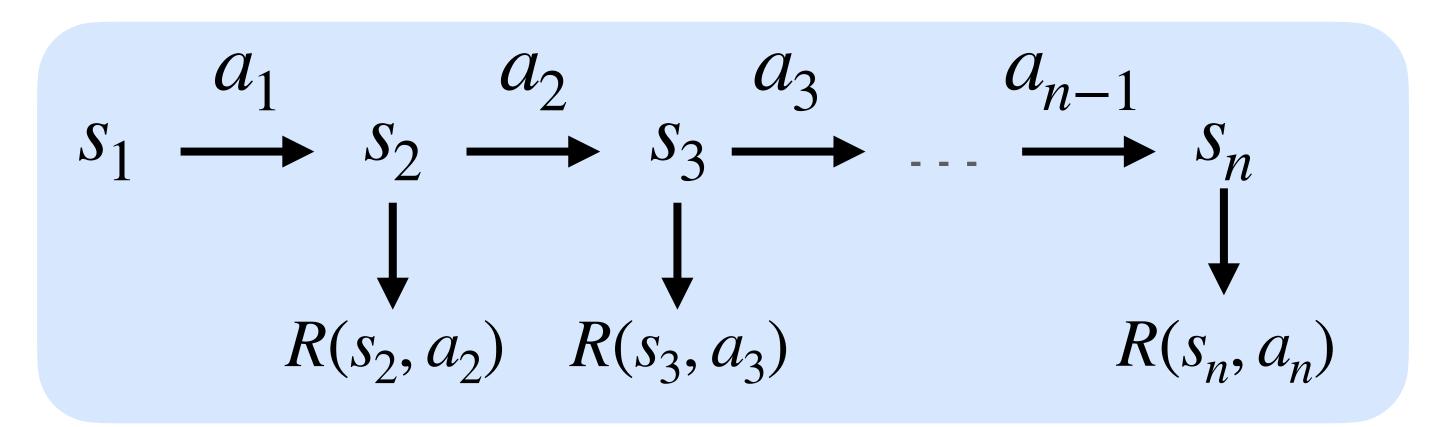
Total Rewards =
$$R(s_1) + \gamma R(s_2) + \gamma^2 R(s_3) + \dots$$
 Independence of actions

Discount Factor

Favors immediate rewards over future ones

Goal: Maximize Expectation of Total Rewards

Given that decisions are probabilistic, we want to maximize the expected rewards



Total Expected Rewards =
$$\mathbb{E}[R(s_1) + \gamma R(s_2) + \gamma^2 R(s_3) + \dots]$$

Expectation or average

Goal: Maximize Expectation of Total Rewards

Given that decisions are probabilistic, we want to maximize the expected rewards

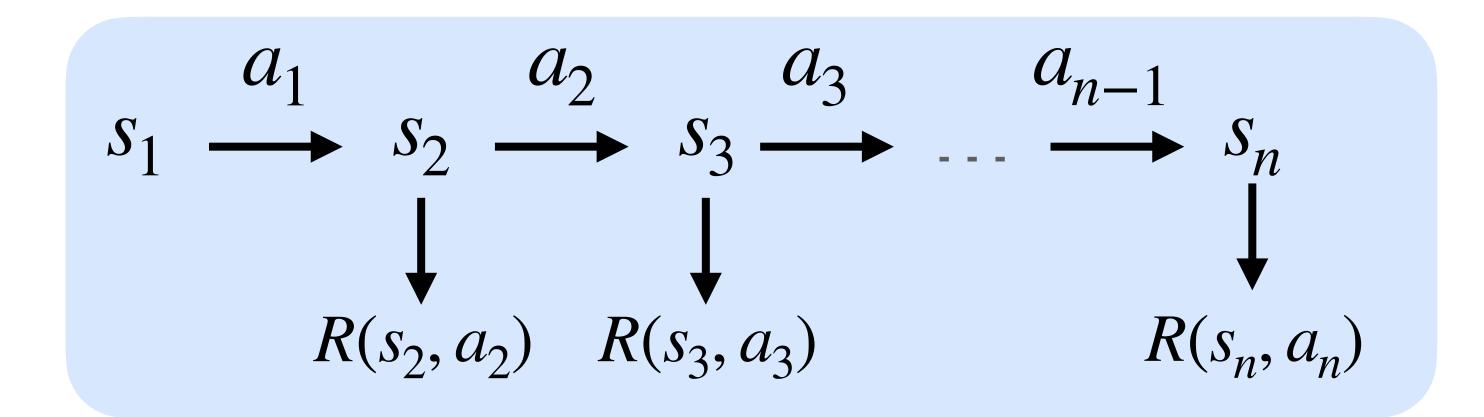
Total Expected Rewards =
$$\mathbb{E}[R(s_1) + \gamma R(s_2) + \gamma^2 R(s_3) + \dots]$$

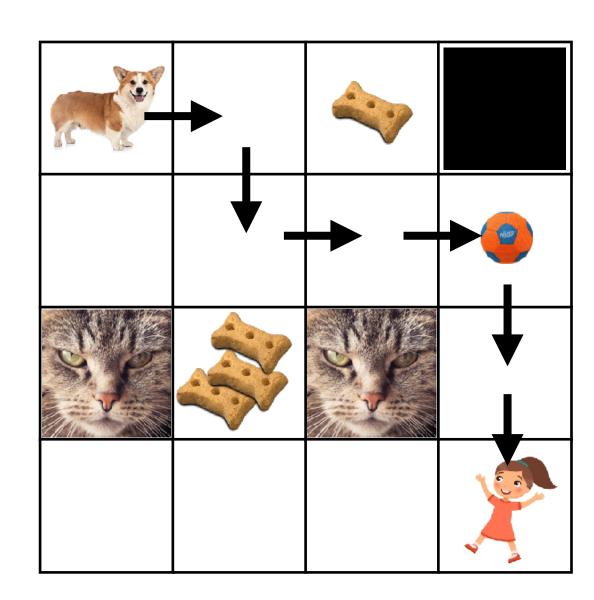
Expectation or Average

• Example: given a die with 6 faces, numbered 1 to 6. If you throw the die and get face 1, you make \$1, if you get 2, you make \$2, etc. What's your expected return?

$$\sum_{i} P(i)R(i) = \frac{1}{6}1 + \frac{1}{6}2 + \dots = \frac{21}{6}$$

Markov Decision Process (MDP)

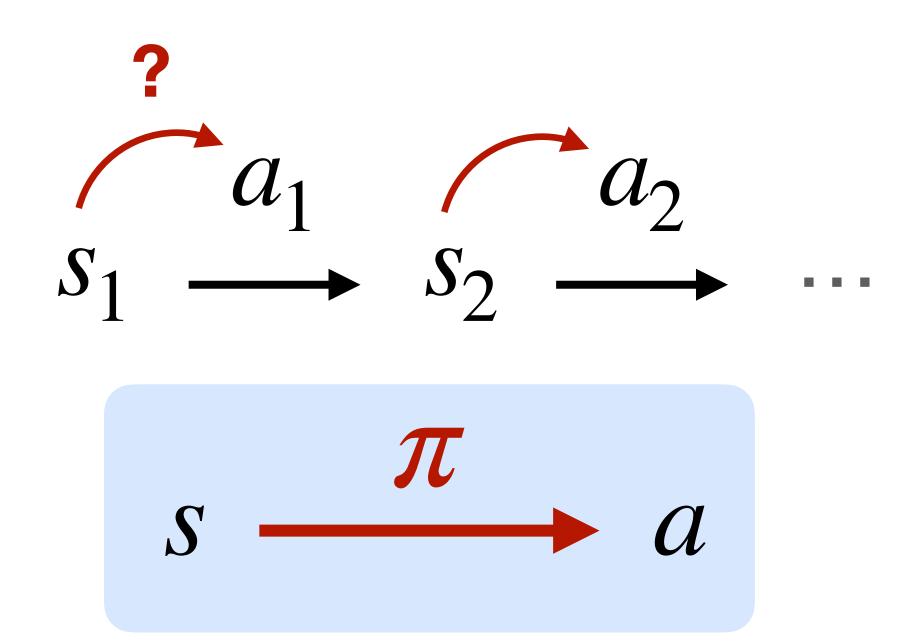




- 1. Set of states: S
- 2. Set of actions: A
- 3. State transition probability: $P(s'|s,a) \equiv P_{sa}(s')$, for $s,s' \in S$ and $a \in A$
- 4. **Reward** function: R(s,a) or R(s) that maps states (and actions) to a real number $\mathbb R$
- 5. **Discount** factor: $\gamma < 1$

How should the agent make decisions?

The agent needs a policy for taking action



We are executing some policy π if whenever we're at s, we take action a according to

$$a = \pi(s)$$

How good is a policy π ?

We can define a value function associated with a policy & Markov Decision Process

$$V^{\pi}(s) = \mathbb{E}\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots \mid s_0 = s, \pi\right]$$

 $V^{\pi}(s)$ is the **expected sum of discounted rewards** upon starting in state s, and taking actions according to π

How good is a policy π ?

We can define a value function associated with a policy & Markov Decision Process

$$V^{\pi}(s) = \mathbb{E}\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots \mid s_0 = s, \pi\right]$$

$$V^{\pi}(s) = \mathbb{E}\left[R(s_0) + \gamma \left(R(s_1) + \gamma R(s_2) + \dots\right) \mid s_0 = s, \pi\right]$$

$$V^{\pi}(s) = R(s) + \gamma \mathbb{E}\left[\left(R(s_1) + \gamma R(s_2) + ...\right) \mid s_1 = s, \pi\right]$$

$$V^{\pi}(s) = R(s) + \gamma \mathbb{E}\left[V^{\pi}(s_1)\right]$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s')$$

The Bellman Equation

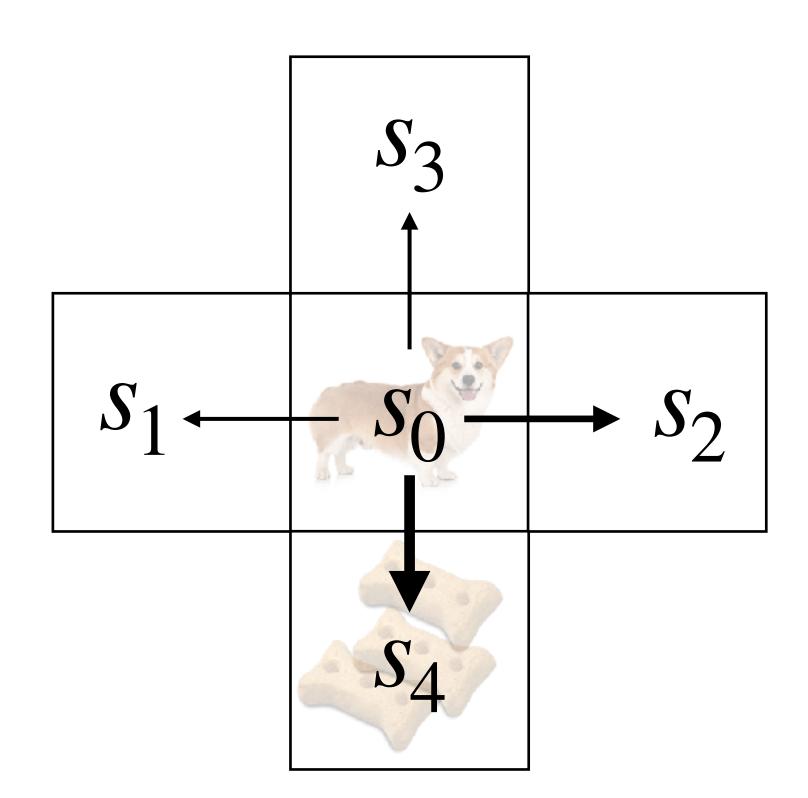
$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P(s' | s, \pi(s)) V^{\pi}(s')$$

s' is the state after s

Bellman Equation

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) V^{\pi}(s')$$

Gives a system of |S| linear equations for each unknown $V^{\pi}(s)$



Equation for $V^{\pi}(s_0)$

$$\begin{split} V^{\pi}(s_0) &= R(s_0) + \gamma \left[\begin{array}{cc} P(s_1 \,|\, s_0, \pi(s_0)) V^{\pi}(s_1) \\ \\ &+ P(s_2 \,|\, s_0, \pi(s_0)) V^{\pi}(s_2) \\ \\ &+ P(s_3 \,|\, s_0, \pi(s_0)) V^{\pi}(s_3) \\ \\ &+ P(s_4 \,|\, s_0, \pi(s_0)) V^{\pi}(s_4) \right] \end{split}$$

What's the optimal value function?

In other words, what's the **best expected sum of discounted rewards** if one gets to choose *any* policy π ?

$$V^{\star}(s) = \max_{\pi} V^{\pi}(s)$$

What's the optimal policy the agent can take if they start at state s?

$$\pi^*(s) = \underset{a \in A}{\operatorname{arg max}} \sum_{s' \in S} P(s'|s,a)V^*(s')$$

Solving for the optimal value function

Given the optimal policy:

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P(s'|s,a)V^*(s')$$

We can write its associated Bellman equation:

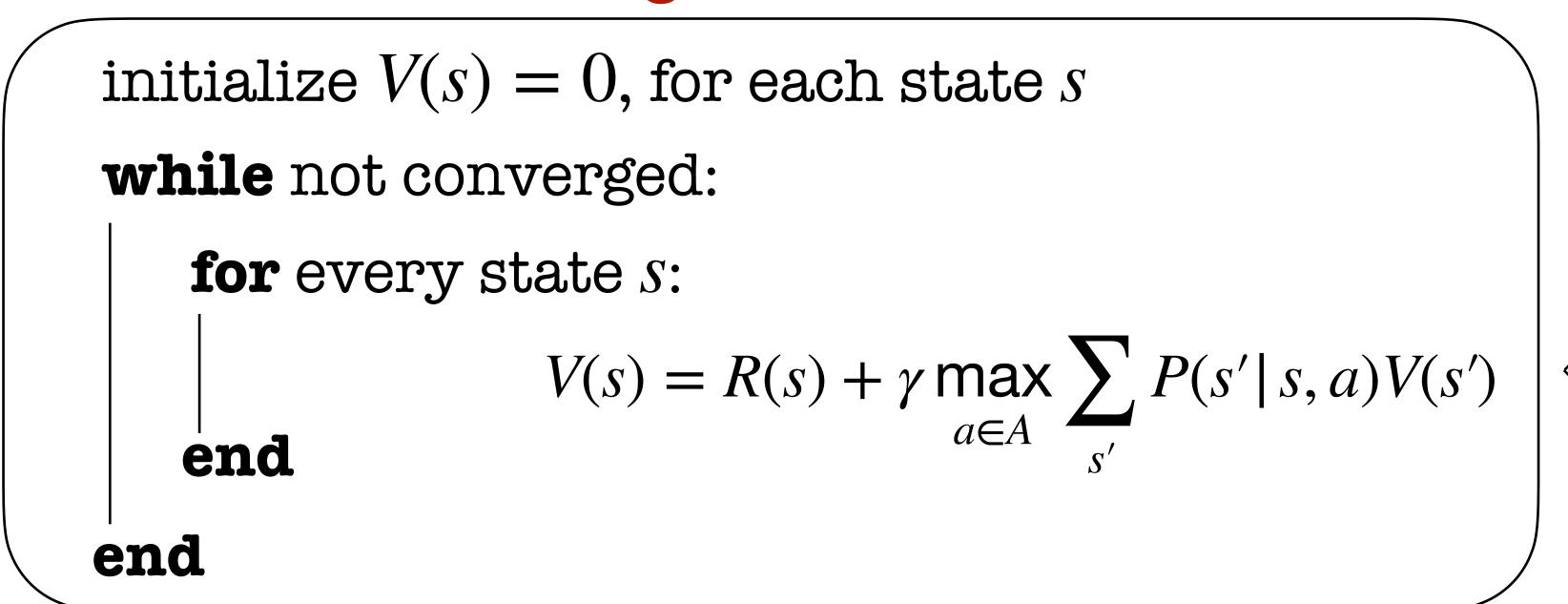
$$V^{\star}(s) = R(s) + \gamma \max_{a \in A} \sum_{s' \in S} P(s'|s, a) V^{\star}(s')$$

How to find the optimal value function?

Given:

- Reward function R(s)
- State transition probability P(s'|s,a)

Value iteration algorithm



Synchronous

compute new V(s) for all s then overwrite old V(s)

Asynchronous

update V(s) one at a time

How to find the optimal value function?

Given:

- Reward function R(s)
- State transition probability P(s'|s,a)

$\pi^*(s) = \underset{a \in A}{\operatorname{arg max}} \sum_{s' \in S} P(s'|s, a) V^*(s')$

Value iteration algorithm

initialize V(s) = 0, for each state s

while not converged:

for every state s:

$$V(s) = R(s) + \gamma \max_{a \in A} \sum_{s'} P(s'|s,a)V(s')$$
 end

end

Having found V^* , compute optimal policy

Synchronous compute new V(s) for all s then overwrite old V(s)

Asynchronous update V(s) one at a time

How to find the optimal policy?

Given:

- Reward function R(s)
- State transition probability P(s'|s,a)

Policy iteration algorithm

```
initialize \pi randomly while not converged:

Let V = V^{\pi} (by solving linear system)

for every state s:

\pi(s) = \arg\max_{a \in A} \sum_{s'} P(s'|s,a)V(s')

end

end
```

$$\pi^*(s) = \underset{a \in A}{\operatorname{arg max}} \sum_{s' \in S} P(s'|s,a)V^*(s')$$

Policy vs. Value Iteration

Policy iteration algorithm

```
initialize \pi randomly while not converged:

Let V = V^{\pi}
for every state s:

\pi(s) = \arg\max_{a \in A} \sum_{s'} P(s'|s,a)V(s')
end
end
```

Value iteration algorithm

```
initialize V(s)=0, for each state s

while not converged:

for every state s:

V(s)=R(s)+\gamma\max_{a\in A}\sum_{s'}P(s'|s,a)V(s')
end

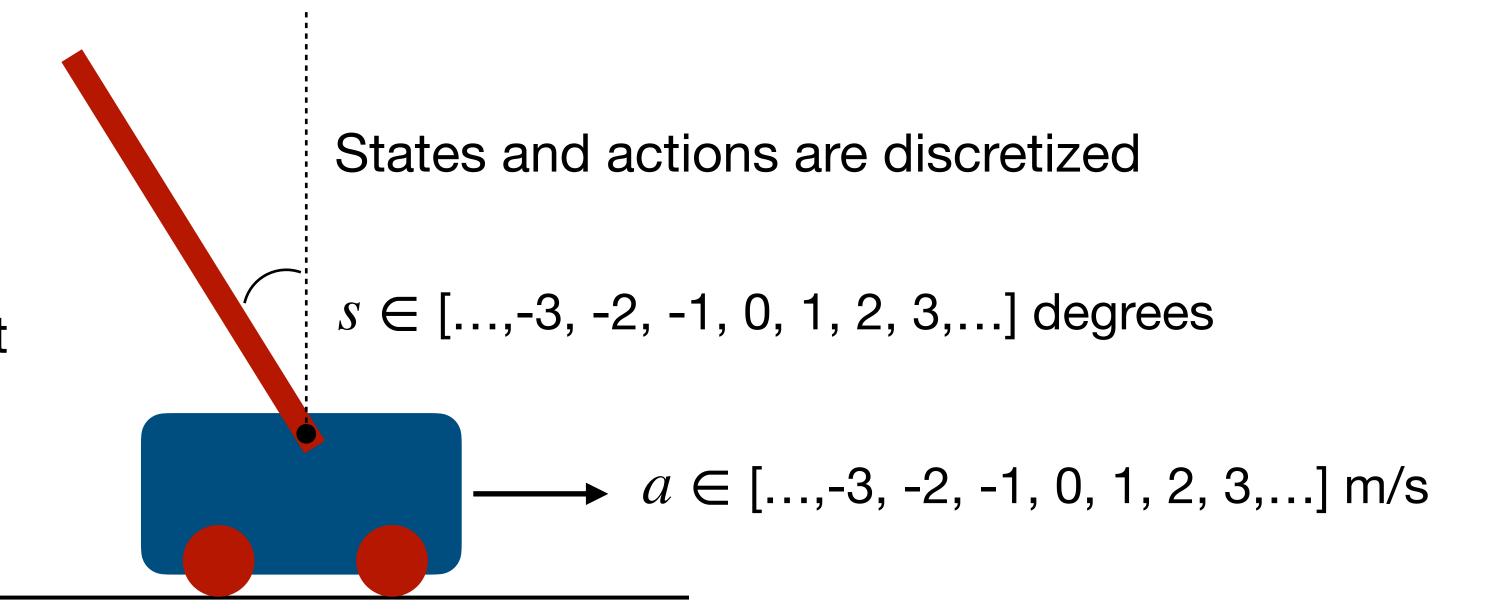
end
```

- There is no agreement which is better
- For small MDPs, policy iteration is very fast.
- But the linear solve step is slow for large state spaces, so value iteration is used more often

What if we don't know P(s'|s,a) and R(s)?

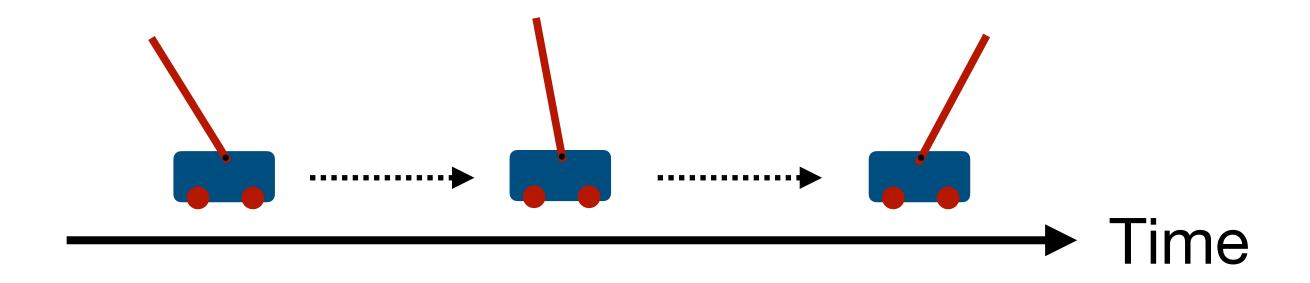
We are not given state transitions and rewards explicitly, but are given data

- State s is the angle of the pole
- Actions a is the velocity of the cart



What if we don't know P(s'|s,a) and R(s)?

We are given a number of trials



Trial 1
$$s_0^{(1)} \xrightarrow{a_0^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}} s_3^{(1)} \xrightarrow{a_3^{(1)}} \cdots$$
 $s_i^{(j)}$: state at time i of trial j $a_i^{(j)}$: action taken from that state

Trial 2
$$s_0^{(2)} \xrightarrow{a_0^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}} s_3^{(2)} \xrightarrow{a_3^{(2)}} \cdots$$

Learning P(s'|s,a)

$$s_0^{(1)} \xrightarrow{a_0^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}} s_3^{(1)} \xrightarrow{a_3^{(1)}} \dots$$

$$s_0^{(2)} \xrightarrow{a_0^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}} s_3^{(2)} \xrightarrow{a_3^{(2)}} \dots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$P(s'|s,a) = \frac{\# \text{ of } s \xrightarrow{a} s'}{\# \text{ of } s \xrightarrow{a}}$$

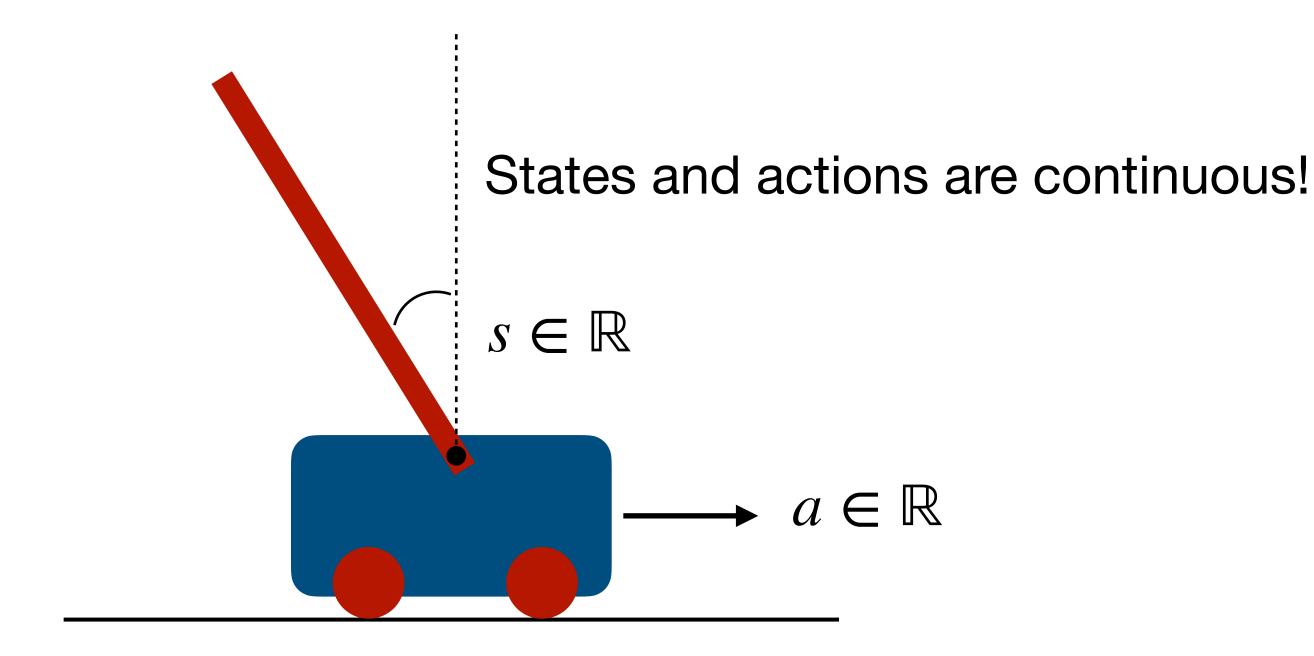
$$R(s) = \frac{\text{sum of } R \text{ in } s}{\text{# of times in } s}$$

Find the optimal policy with unknown P and R

```
initialize \pi randomly
for trials:
   for trials:
      Execute \pi in MDP
   end
   update estimates of P(s'|s,a) and R(s)
   apply value iteration to find new V(s)
   update \pi
end
```

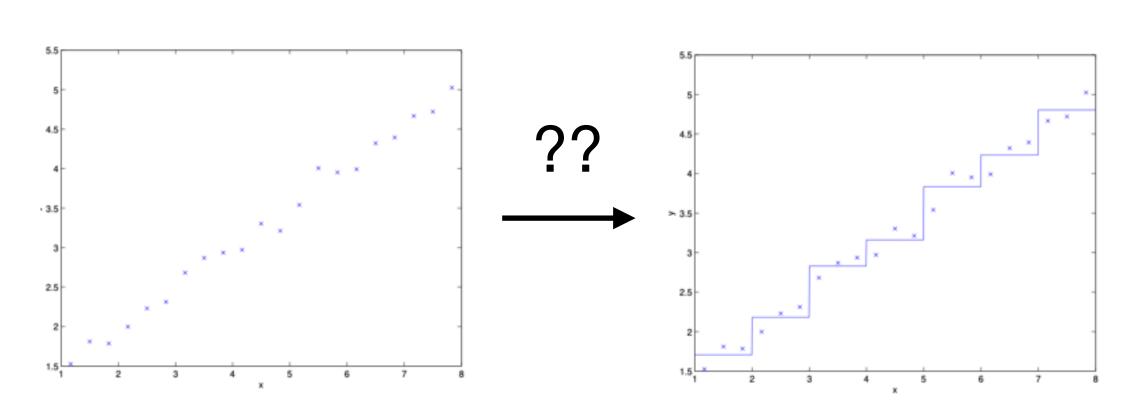
Continuous Markov Decision Processes (MDP)

- State s is the angle of the pole
- Actions a is the velocity of the cart



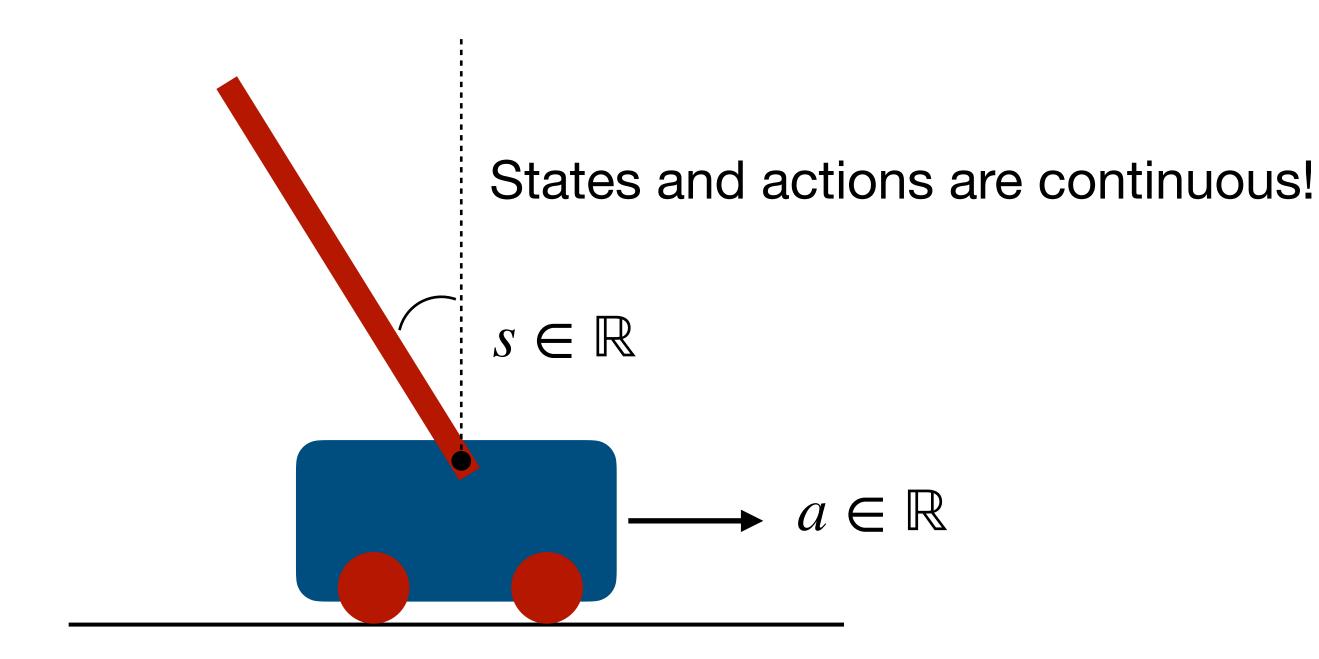
Downsides of discretization:

- Step-wise fit to a continuous problem
- Curse of dimensionality



Continuous Markov Decision Processes (MDP)

- State s is the angle of the pole
- Actions a is the velocity of the cart



Downsides of discretization:

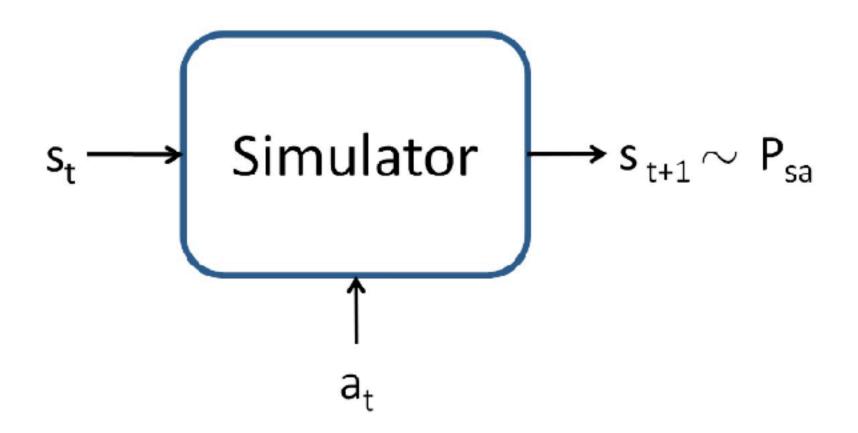
- Step-wise fit to a continuous problem
- Curse of dimensionality

$$S \in \mathbb{R}^d \longrightarrow k^d$$
 States

Discretize each dim.

into k values

Value Function Approximation



Given a physical model
$$\frac{ds}{dt} = f(s)$$

Value Function Approximation

Trial 1
$$s_0^{(1)} \xrightarrow{a_0^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}} s_3^{(1)} \xrightarrow{a_3^{(1)}} \cdots$$

Trial 2 $s_0^{(2)} \xrightarrow{a_0^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}} s_3^{(2)} \xrightarrow{a_3^{(2)}} \cdots$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$

Learn a state-space model

$$s_{t+1} = As_t + Ba_t$$

With A and B as fitting parameters

Fitting Value Iteration

$$V(s) := R(s) + \gamma \max_{a} \int_{s'} P_{sa}(s')V(s')ds'$$
$$= R(s) + \gamma \max_{a} \operatorname{E}_{s' \sim P_{sa}}[V(s')]$$

See page 188 for more