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Reinforcement Learning
Part I



Example: OpenAI’s Multi-Agent Hide and Seek

https://www.youtube.com/watch?v=kopoLzvh5jY&ab_channel=OpenAI

https://www.youtube.com/watch?v=kopoLzvh5jY
https://www.youtube.com/watch?v=kopoLzvh5jY&ab_channel=OpenAI


What are the features of an intelligent agent?

• Actions: make decisions and act from a set of possible 


• Perceptions: observe the world and one’s own state

https://www.javatpoint.com/
reinforcement-learning



What are the features of an intelligent agent?

• Plan for long-term consequences: decisions 
today will affect the state tomorrow and 
later, etc.


• Decisions will determine how much 
information you collect from the 
environment


• No or little supervision: collect more data 
interactively



Example

a ∈ { → , ← , ↑ , ↓ }

s ∈ {(1,1), (1,2), . . . , (4,4)}

R(si) ∈ [−5, 20]

P(s′￼|s, a) ∈ [0, 1]
Transition  
probability:

Rewards:

+1

+5

+20

+2
-5

Actions:

States:



Definitions

Action

State

s1 s2 s3 sn
a1 a2 a3 an−1

R(s2, a2) R(s3, a3) R(sn, an)

…

Reward



Markov Decision Process (MDP)

s0
a

?

s1

s2

s3

s4

P(si |s0, a)

0.1

0.2

0.1

0.6

s0s1 s2

s3

s4

Assumes a probabilistic (uncertain) world



s1 s2 s3
a1 a2

Action

State

Markov Decision Process (MDP)

s4
a3

P(si |si−1, si−2, si−3, ai, ai−1, …) = P(si |si−1, ai)

?

The Markov assumption:  
transition probability only depends on previous state



Goal: Maximize Total Rewards

s1 s2 s3 sn
a1 a2 a3 an−1

R(s2, a2) R(s3, a3) R(sn, an)

…

Total Rewards = R(s1, a1) + γ R(s2, a2) + γ2 R(s3, a3) + …

Discount Factor
Favors immediate rewards over future ones

γ < 1

Definition of Total Rewards



Goal: Maximize Total Rewards

Total Rewards = R(s1) + γR(s2) + γ2R(s3) + …

Discount Factor
Favors immediate rewards over future ones

Independence  
of actions

Definition of Total Rewards

s1 s2 s3 sn
a1 a2 a3 an−1

R(s2, a2) R(s3, a3) R(sn, an)

…



Goal: Maximize Expectation of Total Rewards

Total Expected Rewards = 𝔼 [R(s1) + γR(s2) + γ2R(s3) + …]

Given that decisions are probabilistic, we want to maximize the expected rewards

s1 s2 s3 sn
a1 a2 a3 an−1

R(s2, a2) R(s3, a3) R(sn, an)

…

Expectation or average



Goal: Maximize Expectation of Total Rewards

Total Expected Rewards = 𝔼 [R(s1) + γR(s2) + γ2R(s3) + …]

Given that decisions are probabilistic, we want to maximize the expected rewards

Expectation or Average

• Example: given a die with 6 faces, numbered 1 to 6. If you throw the 
die and get face 1, you make $1, if you get 2, you make $2, etc. 
What’s your expected return? 

∑
i

P(i)R(i) =
1
6

1 +
1
6

2 + … =
21
6



Markov Decision Process (MDP)

s1 s2 s3 sn
a1 a2 a3 an−1

R(s2, a2) R(s3, a3) R(sn, an)

…

1. Set of states: 


2. Set of actions: 


3. State transition probability: , for  and 


4. Reward function:  or  that maps states (and actions) to a real number  


5. Discount factor: 

S

A

P(s′￼|s, a) ≡ Psa(s′￼) s, s′￼ ∈ S a ∈ A

R(s, a) R(s) ℝ

γ < 1



How should the agent make decisions?
The agent needs a policy for taking action

πs a

s1 s2
a1 a2 …

?

We are executing some policy  if  
whenever we’re at , we take action  according to

π
s a

a = π(s)



How good is a policy ?π
We can define a value function associated with a  
policy & Markov Decision Process

Vπ(s) = 𝔼 [R(s0) + γR(s1) + γ2R(s2) + … |s0 = s, π]

 is the expected sum of discounted rewards upon  
starting in state , and taking actions according to 

Vπ(s)
s π



How good is a policy ?π
We can define a value function associated with a  
policy & Markov Decision Process

Vπ(s) = 𝔼 [R(s0) + γR(s1) + γ2R(s2) + … |s0 = s, π]

Vπ(s) = 𝔼 [R(s0) + γ (R(s1) + γR(s2) + …) |s0 = s, π]
Vπ(s) = R(s) + γ𝔼 [(R(s1) + γR(s2) + …) |s1 = s, π]
Vπ(s) = R(s) + γ𝔼 [Vπ(s1)]
Vπ(s) = R(s) + γ∑

s′￼∈S

P(s′￼|s, a)Vπ(s′￼) Vπ(s) = R(s) + γ∑
s′￼∈S

P(s′￼|s, π(s))Vπ(s′￼)

 is the state after s′￼ s

The Bellman Equation



Bellman Equation

Vπ(s) = R(s) + γ∑
s′￼∈S

P(s′￼|s, π(s))Vπ(s′￼)

s0s1 s2

s3

s4

Vπ(s0) = R(s0) + γ [ P(s1 |s0, π(s0))Vπ(s1)

+ P(s2 |s0, π(s0))Vπ(s2)

+ P(s3 |s0, π(s0))Vπ(s3)

+ P(s4 |s0, π(s0))Vπ(s4)]

Gives a system of linear equations 
for each unknown 

|S |
Vπ(s)

Equation for Vπ(s0)



What’s the optimal value function?
In other words, what’s the best expected sum of discounted rewards 
if one gets to choose any policy  ?π

V⋆(s) = max
π

Vπ(s)

What’s the optimal policy the agent can take if they start at state ?s

π⋆(s) = arg max
a∈A ∑

s′￼∈S

P(s′￼|s, a)V⋆(s′￼)



Solving for the optimal value function

V⋆(s) = R(s) + γ max
a∈A ∑

s′￼∈S

P(s′￼|s, a)V⋆(s′￼)

Given the optimal policy:

π⋆(s) = arg max
a∈A ∑

s′￼∈S

P(s′￼|s, a)V⋆(s′￼)

We can write its associated Bellman equation:



How to find the optimal value function?
Given:  
  - Reward function   
  - State transition probability 

R(s)
P(s′￼|s, a)

Value iteration algorithm
initialize , for each state V(s) = 0 s
while not converged:

for every state :s
V(s) = R(s) + γ max

a∈A ∑
s′￼

P(s′￼|s, a)V(s′￼)
end

end

Synchronous 
compute new  for all  
then overwrite old 

V(s) s
V(s)

Asynchronous 
update  one at a timeV(s)



How to find the optimal value function?
Given:  
  - Reward function   
  - State transition probability 

R(s)
P(s′￼|s, a)

Value iteration algorithm
initialize , for each state V(s) = 0 s
while not converged:

for every state :s
V(s) = R(s) + γ max

a∈A ∑
s′￼

P(s′￼|s, a)V(s′￼)
end

end

Synchronous 
compute new  for all  
then overwrite old 

V(s) s
V(s)

Asynchronous 
update  one at a timeV(s)

Having found ,  
compute optimal policy

V⋆

π⋆(s) = arg max
a∈A ∑

s′￼∈S

P(s′￼|s, a)V⋆(s′￼)



How to find the optimal policy?
Given:  
  - Reward function   
  - State transition probability 

R(s)
P(s′￼|s, a)

Policy iteration algorithm
initialize  randomlyπ
while not converged:

for every state :s

end
end

π⋆(s) = arg max
a∈A ∑

s′￼∈S

P(s′￼|s, a)V⋆(s′￼)

π(s) = arg max
a∈A ∑

s′￼

P(s′￼|s, a)V(s′￼)

Let V = Vπ (by solving linear system)



Policy vs. Value Iteration
Policy iteration algorithm

initialize  randomlyπ
while not converged:

for every state :s

end
end

π(s) = arg max
a∈A ∑

s′￼

P(s′￼|s, a)V(s′￼)

Let V = Vπ

Value iteration algorithm

initialize , for each state V(s) = 0 s
while not converged:

for every state :s
V(s) = R(s) + γ max

a∈A ∑
s′￼

P(s′￼|s, a)V(s′￼)

end

end

• There is no agreement which is better


• For small MDPs, policy iteration is very fast. 


• But the linear solve step is slow for large state spaces, so value iteration is used more often



What if we don’t know  and ?P(s′￼|s, a) R(s)
We are not given state transitions and rewards explicitly, but are given data

[…,-3, -2, -1, 0, 1, 2, 3,…] m/sa ∈

[…,-3, -2, -1, 0, 1, 2, 3,…] degreess ∈

States and actions are discretized

• State  is the angle of the pole

• Actions  is the velocity of the cart 

s
a



What if we don’t know  and ?P(s′￼|s, a) R(s)
We are given a number of trials

Time

s(1)
1 s(1)

2 s(1)
3

a(1)
1 a(1)

2 a(1)
3s(1)

0

a(1)
0 …

s(2)
1 s(2)

2 s(2)
3

a(2)
1 a(2)

2 a(2)
3s(2)

0

a(2)
0 …

…… ……

Trial 1

Trial 2

: state at time  of trial s( j)
i i j

: action taken from that statea( j)
i



Learning P(s′￼|s, a)

s(1)
1 s(1)

2 s(1)
3

a(1)
1 a(1)

2 a(1)
3s(1)

0

a(1)
0 …

s(2)
1 s(2)

2 s(2)
3

a(2)
1 a(2)

2 a(2)
3s(2)

0

a(2)
0 …

…… ……

P(s′￼|s, a) =
# of
# of

s s′￼

a

s
a

R(s) =
sum of
# of times in s

R in s



Find the optimal policy with unknown  and P R

initialize  randomlyπ
for trials:

end

Execute  in MDP π
for trials:

end
update estimates of  and P(s′￼|s, a) R(s)
apply value iteration to find new V(s)
update π



Continuous Markov Decision Processes (MDP)

a ∈ ℝ

s ∈ ℝ

States and actions are continuous!

• State  is the angle of the pole

• Actions  is the velocity of the cart 

s
a

??
Downsides of discretization: 

• Step-wise fit to a continuous problem

• Curse of dimensionality



Continuous Markov Decision Processes (MDP)

a ∈ ℝ

s ∈ ℝ

States and actions are continuous!

• State  is the angle of the pole

• Actions  is the velocity of the cart 

s
a

Downsides of discretization: 

• Step-wise fit to a continuous problem

• Curse of dimensionality

S ∈ ℝd kd States
Discretize each dim. 

into  valuesk



Value Function Approximation

ds
dt

= f(s)Given a physical model



Value Function Approximation

s(1)
1 s(1)

2 s(1)
3

a(1)
1 a(1)

2 a(1)
3s(1)

0

a(1)
0 …

s(2)
1 s(2)

2 s(2)
3

a(2)
1 a(2)

2 a(2)
3s(2)

0

a(2)
0 …

…… ……

Trial 1

Trial 2

st+1 = Ast + Bat

Learn a state-space model

With  and  as fitting parametersA B



Fitting Value Iteration

See page 188 for more


