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Dimensionality Reduction

Principal Component Analysis
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# Compute the covariance matrix
Sigma = X_centered.T @ X_centered

# Find eigenvalues and eigenvectors of the covariance matrix
eigenvalues, eigenvectors = np.linalg.eig(Sigma)

or U, S, Vt = np.linalg.svd(data_centered)



Dimensionality Reduction

Principal Component Analysis
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Scikit-Learn

class sklearn.decomposition.PCA(n_components=None, *, copy=True, whiten=False,
svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10,

power_iteration_normalizer='auto', random_state=None)

svd_solver : {‘auto’, ‘full’, ‘covariance_eigh’, ‘arpack’, ‘randomized’}, default="auto’
“auto” :
The solver is selected by a default 'auto’ policy is based on X.shape and n_components : if the input data
has fewer than 1000 features and more than 10 times as many samples, then the "covariance_eigh" solver
is used. Otherwise, if the input data is larger than 500x500 and the number of components to extract is

lower than 80% of the smallest dimension of the data, then the more efficient “randomized” method is
selected. Otherwise the exact “full” SVD is computed and optionally truncated afterwards.



Dimensionality Reduction
Kernel PCA

Extension of PCA which achieves non-linear dimensionality reduction through the use of kernels
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Dimensionality Reduction
t-Distributed Stochastic Neighbor Embedding (t-SNE)

Represents high-dimensional data in a lower-dimensional space
while preserving the relationships between data points
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https://scikit-learn.org/1.5/auto_examples/manifold/plot_t_sne_perplexity.html#sphx-glr-auto-examples-manifold-plot-t-sne-perplexity-py



Dimensionality Reduction
t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE of the MNIST data
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Dimensionality Reduction
t-Distributed Stochastic Neighbor Embedding (t-SNE)

The similarity between two data points, x; & x; In lower-dimensions (2-3D), the joint distribution

is calculated using a conditional probability between points in the reduced space is given by
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Is created by the mean

P(x;, x;) = [P(x;| x;) + P(x; | x;)]/2n

https://scikit-learn.org/1.5/auto_examples/manifold/plot_t_sne_perplexity.html#sphx-glr-auto-examples-manifold-plot-t-sne-perplexity-py



Dimensionality Reduction
t-Distributed Stochastic Neighbor Embedding (t-SNE)
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P(x;| x;) = “Distance” between them is minimized
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Q(xi’ xj) = =1 The Kullback-Leibler (KL) divergence is
Zk# (1 T ”)’k — )’ZH ) Often used to minimize the distance between
two distributions

https://scikit-learn.org/1.5/auto_examples/manifold/plot_t_sne_perplexity.html#sphx-glr-auto-examples-manifold-plot-t-sne-perplexity-py



Dimensionality Reduction
Independent Component Analysis (ICA)

The goal of ICA is to express observed data X (A matrix of n observed signals)
as a linear combination of statistically independent source signals

True Independent Sources Observations
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https://scikit-learn.org/stable/auto_examples/decomposition/plot_ica_vs_pca.html#sphx-glr-auto-examples-decomposition-plot-ica-vs-pca-py



Dimensionality Reduction
Independent Component Analysis (ICA)

The goal of ICA is to express observed data X (a matrix of n observed signals)
as a linear combination of statistically independent source signals

The observed data X; can be represented as a linear combination of the source

Dataset
signals Sj with the mixing matrix elements Az'j:
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3.0 54 This equation states that each observed variable X; is a sum of contributions
4.3 6.4 from each source S;, weighted by the mixing coefficients A4;;. In matrix form,

' ' this can be written compactly as:
3.2 5.4
X =AS

where X is the vector of observed variables, A is the mixing matrix, and S is the
vector of source signals. The goal of ICA is to find the inverse (or unmixing
matrix W) such that:

S =WX

https://scikit-learn.org/stable/auto_examples/decomposition/plot_ica_vs_pca.html#sphx-glr-auto-examples-decomposition-plot-ica-vs-pca-py



Dimensionality Reduction

Factor Analysis

In unsupervised learning we only have a dataset X = {xl, oy :z:,,}. How can this dataset be
described mathematically? A very simple continuous latent variable model for X is

zi=Whi+ p+e

The vector h; is called “latent” because it is unobserved. € is considered a noise term distributed
according to a Gaussian with mean 0 and covariance W (i.e. € ~ ./\/(0, \I’)), W is some arbitrary offset
vector. Such a model is called “generative” as it describes how z; is generated from h;. If we use all
the z;'s as columns to form a matrix X and all the h;'s as columns of a matrix H then we can write

(with suitably defined M and E):

X=WH+M+E
In other words, we decomposed matrix X.

If h; is given, the above equation automatically implies the following probabilistic interpretation:

p(z;i|h;) = N(Wh; + p, ¥)

For a complete probabilistic model we also need a prior distribution for the latent variable h. The maost
straightforward assumption (based on the nice properties of the Gaussian distribution) is
h ~ N (0,I). This yields a Gaussian as the marginal distribution of z:

p(z) = N(”v ww + T)

https://scikit-learn.org/stable/modules/decomposition.html#factor-analysis



Dimensionality Reduction

Neural Networks: Auto-encoders

Low dimensional
Latent representation

X encoder l decoder -S,

L= |[fw,w,(x) =]

if 0 = I, network reduced to SVD decomposition

X =UXV"



Auto-encoders

ising

Neural Networks
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Clustering

K-Means
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Clustering

Gaussian Mixture Models

Dataset
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Clustering

A zoo of clustering methods

MiniBatch Affinity Spectral Agglomerative Gaussian
Propagation MeanShift Clustering Clustering DBSCAN HDBSCAN OPTICS BIRCH Mixture
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https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering



Clustering

Hierarchical Clustering

Dendrogram

https://towardsdatascience.com/hierarchical-clustering-explained-e59b13846da8



Clustering

Hierarchical Clustering
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https://towardsdatascience.com/hierarchical-clustering-explained-e59b13846da8



Clustering

Hierarchical Clustering

Big ears Calm behavior

https://towardsdatascience.com/hierarchical-clustering-explained-e59b13846da8



Clustering

Hierarchical Clustering
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https://towardsdatascience.com/hierarchical-clustering-explained-e59b13846da8



Clustering

Hierarchical Clustering

Objective function for Ward’s method

> ) = pell?

C xeC
» (C represents a cluster in the set of all clusters
e X is a data point within cluster C

» U is the centroid (mean) of cluster C

« ||Ix — pc||* is the squared Euclidean distance between a point x
and the centroid pu.

https://towardsdatascience.com/hierarchical-clustering-explained-e59b13846da8



